1

Тема: Теория ректификации

Ректификация – тепломассообменный процесс, который осуществляется в противоточных колонных аппаратах с контактными элементами (насадка, тарелки). В процессе ректификации происходит непрерывный обмен между жидкой и паровой фазой. Жидкая фаза обогащается более высококипящим компонентом, а паровая фаза – более низкокипящим. Процесс тепломассообмена происходит по всей высоте колонны между стекающим вниз дистиллятом , образующимся наверху колонны (флегмой), и поднимающимся вверх паром. Чтобы интенсифицировать процесс тепломассообмена применяют контактные элементы, увеличивающие поверхность взаимодействия фаз. В случае применения насадки, флегма стекает тонкой пленкой по ее развитой поверхности. В случае применения тарелок, пар в виде множества пузырьков, образующих развитую поверхность контакта, проходит через слой жидкости на тарелке.

Целью ректификации вообще является чёткое разделение жидких смесей на отдельные чистые компоненты.
При ректификации спирта основная задача - из 40%-го СС получить СР с концентрацией в нем ЭС не менее 96% при минимальным содержании посторонних примесей. Для этого процесс ректификации СС проводят за один раз на специальном ректификационном оборудовании. Это оборудование позволяет разделять водно-спиртовую смесь на отдельные азеотропные фракции, отличающиеся температурами кипения. Одной из таких фракций является пищевой спирт-ректификат.


Оборудование для ректификации
В промышленности применяются ректификационные установки непрерывного действия. В этих установках 85%-ый СС и перегретый водяной пар смешиваются в нижней части колонны и превращаются в ≈ 40%-ый водно-спиртовой насыщенный пар при температуре ≈ 94°C Эта паровая смесь непрерывно поступает в ректификационную колонну, расслаивается по ее высоте на отдельные фракции, которые непрерывно и с определенным темпом отбираются из разных частей колонны. Для обеспечения нормальной работы таких непрерывных колонн требуются достаточно сложные и дорогие элементы автоматики.
В химических и физических лабораториях обычно применяют ректификационные колонны периодического действия, не требующие никакой автоматики. Эти колоны оборудованы только элементарными средствами регулировки отбора, температурного контроля  и иногда манометрическим измерителем перепада давления на колонне.

Принципиальные схемы периодических ректификационных установок Чертежи и схемы оборудования

Работа ректификационной колонны

Ректификационная установка работает следующим образом. С помощью нагревателя кубовая жидкость доводится до кипения. Образующийся в кубе пар по ректификационной части колонны поднимается вверх и попадает в дефлегматор, где происходит его полная конденсация. Часть этого конденсата (флегмы) возвращается в ректификационную часть колонны, а другая часть проходит через теплообменник (холодильник) и в виде дистиллята стекает в приемную емкость . Соотношение между расходами флегмы и отбираемого дистиллята называется флегмовым числом и устанавливается с помощью регулятора отбора.    По всей высоте ректификационной части колонны происходит процесс тепломассообмена между стекающей вниз флегмой и поднимающимся вверх паром. В результате этого в дефлегматоре колонны накапливается в виде пара и в узле отбора в виде флегмы самый легкокипящий (с наименьшей температурой кипения) компонент кубовой жидкости, а следом за ним сама собой выстраивается “номерная очередь” (вниз по высоте колонны ) из разных веществ. “Номером” в этой очереди является температура кипения каждого компонента, возрастающая по мере опускания по колонне.
С помощью регулятора осуществляется медленный и последовательный отбор этих веществ в соответствии с их очередностью. “Номер” отбираемого в каждый момент вещества регистрируется с помощью термометра . Зная эту температуру с учетом атмосферного давления, можно достаточно точно указать основное вещество дистиллята, отбираемое в данный момент времени.  Немного подробней в статьях:   Ректификация   и    Температура дистилляции   

В процессе ректификации каждые индивидуальные и промежуточные вещества можно отбирать в отдельные приемные емкости , что позволяет не только провести качественный и количественный анализ исходной смеси, но и получить все ее компоненты раздельно.

Что такое “теоретическая тарелка” и сколько их нужно

Рассмотрим более внимательно кривую равновесия фаз бинарной водно-спиртовой смеси из статьи Ректификация .  Из 10%-го спиртового раствора с помощью простой перегонки можно получить 40%-ый раствор. Затем из 40%-го раствора тем же способом можно получить 60%-ый раствор.
Легко построить на кривой равновесия фаз ряд последовательных ступенек 10-40; 40-60; 60-70; 70-75; и т.д. и убедиться в том, что для достижения в конечном дистилляте концентрации спирта, равной 96%, теоретически потребуется не менее 9…10 таких последовательных перегонок.
Каждая такая перегонка-ступенька условно называется теоретической тарелкой (ТТ). Количество ТТ физически означает количество перегонок, необходимых для получения 96%-го спирта из его 10%-го раствора чистого спирта в чистой воде.
Теоретическую тарелку иногда (а в настоящее время все чаще) называют единицей массопереноса или единицей переноса (ЕП).
На практике мы никогда не имеем чистой смеси спирта с водой (если это не хорошая водка). На практике, единственным источником спиртосодержащей жидкости для получения спирта является бражка или самогон. Оба этих раствора кроме воды и спирта содержат в себе небольшое (по объему) количество примесей. Однако в этих примесях обнаружено порядка 70 разнообразных компонентов, температура кипения которых находится вблизи температуры кипения спирта-ректификата. Более того, многие из этих примесей с “большим удовольствием” образуют со спиртом и водой многокомпонентный азеотроп спирта  с ухудшенными вкусовыми свойствами.
Опыт показывает, что для получения высококачественного спирта необходимо иметь не менеем15…30 ТТ или, что одно и то же, - 15…30 ЕП (зависит от качества СС )


Физическая тарелка и чем она отличается от теоретической

В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой (ФТ). Назначение такой тарелки, как и любого другого контактного устройства, - обеспечить наиболее тесное соприкосновение жидкой и паровой фаз для максимального достижения состояния равновесия между ними.
Тарелки работают следующим образом. Пар в виде пузырьков с развитой поверхностью проходит через слой флегмы, находящейся на тарелке. В результате такого “пробулькивания”, тепломассообмен между жидкой и паровой фазами интенсифицируется. Однако после прохода пара через одну тарелку равновесие между фазами не достигается. Мерой отличия состояния паровой и жидкостной фаз от их равновесного состояния является коэффициент полезного действия (КПД) тарелки.
У классических тарелок КПД составляет порядка 50-60%. Т.е. для достижения состояния равновесия фаз, соответствующего одной ТТ, потребуется около двух ФТ. Таким образом для реализации в ректификационной колонне 40 ТТ потребуется установить в ней порядка 80 ФТ классической конструкции.


Насадка и где в ней “теоретические тарелки”

Для успешного взаимодействия флегмы, стекающей вниз по колонне, и пара, движущегося вверх, можно использовать любые другие контактные элементы, увеличивающие площадь и эффективность этого взаимодействия.
Для ректификационных колонн сверхмалого диаметра (15-30мм) более эффективным, по сравнению с тарелкой, контактным элементом является насадка. Насадка заполняет собой весь внутренний объем ректификационной части колонны. Существует множество различных типов насадок, например, регулярные насадки – Спрейпак, Зульцер, Стедман ; хаотичные (насыпные) – керамические кольца Лессинга, Паля, Берля, наиболее распространенная - проволочная (мочалки-скрубберы, путанка и т.п.)
Процесс тепломассообмена на таких контактных элементах проходит непрерывно, а состояние фазового равновесия, эквивалентное одной ТТ, наступает после преодоления паром некоторой высоты насадки. И тогда обычно говорят о высоте слоя насадки, эквивалентного одной ТТ, т.е. для насадочных колонн обычно употребляют понятие – высота теоретической тарелки ВТТ или высота единицы переноса ВЕП ( в настоящее время употребляется чаще). HETP.. англ. сокр.
Эту высоту обычно оценивают в миллиметрах, что позволяет легко сравнивать эффективность той или иной насадки по ее ВЕП и рассчитывать высоту всей ректификационной части колонны. Так, например, при внутреннем диаметре колонны 30мм у проволочной насадки (мочалка-скруббер) ВЕП равна 20…25мм, а у насадки типа Зульцер ВЕП равна 15…20мм.
У насадок высота единицы переноса сильно зависит от соотношения подводимой мощности, диаметра колонны и высоты.
Внешний вид этого малоизвестно контактного элемента многими воспринимается как некоторый фильтр, который обязан иметь определенный срок службы в колонне. Однако это не так. Насадка - это тепломассообменный контактный наполнитель колонны, по которому вниз стекает чистый дистиллят, а вверх поднимается чистый пар. Таким образом, если оба этих компонента действительно не имеют в себе посторонних включений (в колонну не попадает пена из кубовой жидкости), то этот “фильтр” выполняет свои функции тепломассообмена неограниченно долго внутри колонны.


Пропускная способность колонны. Захлебывание колонны

Какие бы контактные элементы не применялись в колонне, схема работы ректификационной колонны остается неизменной – флегма течет вниз, а пар движется вверх.
При таком движении фаз существует некоторая предельная скорость пара, при которой гравитационные силы, обеспечивающие движение флегмы вниз, не в состоянии преодолеть встречный скоростной напор пара. Т.е. при увеличении скорости пара флегма сначала замедляет свою скорость течения вниз, а затем просто останавливается (повисает в колонне) и начинает накапливаться в ее ректификационной части. Происходит захлебывание колонны.
Захлебывание колонны является нерасчетным режимом ее работы. В таком состоянии колонна может находиться не более 30…60 секунд. За это время флегма сначала заполняет внутреннюю полость ректификационной части колонны, потом дефлегматор, а затем происходит ее аварийный выброс из колонны через верхний штуцер дефлегматора. Захлебывание колонны можно определить по перепаду давления в колонне, или можно отчетливо услышать как специфический “булькающий” шум в колонне.
Чтобы избежать захлебывания ректификационной установки надо четко следовать рекомендациям по эксплуатации, изложенным в паспорте на каждую установку.
Предельную скорость пара определяют сами контактные элементы, загромождающие внутреннее сечение колонны. У разных контактных элементов есть своя предельная скорость спиртового пара в полном сечении колонны, которая находится в диапазоне 0,5…1,2м/с. Это является и максимальной пропускной способностью колонны, которая обычно выражается массовым расходом пара (кг/час) через единицу площади полного сечения колонны (м2). Её величина для разных контактных элементов находится в диапазоне 2000…7000(кг/ч)/м2.
Колонну с теми или иными контактными элементами можно “нагружать” и меньшим потоком пара. Однако, максимальная эффективность многих контактных элементов (КПД тарелки и ВЕП насадки) реализуется при работе колонны вблизи состояния захлебывания. Поэтому все ректификационные колонны проектируют на рабочий режим, максимально приближенный к предельной пропускной способности колонны.
Массовый расход паров спирта (при теплоте парообразования СР 925кДж/кг), проходящий через колонну, полностью определяется мощностью, подведенной к испарительной емкости. Так, например, при технологической мощности в 1кВт будет образовываться следующее количество паров спирта в единицу времени:

http://cs421829.vk.me/v421829663/12c7/sPoFCHrfDxs.jpg

Поэтому на этапе ректификации колонна нагружается только той технологической мощностью (Wт), на которую расчитана изначально.  Если Вы увеличите подводимую мощность, Вы увеличите количество испаренного спирта, а, следовательно, увеличите скорость его паров по колонне. В результате произойдет захлебывание колонны со всеми вытекающими отсюда последствиями.
Стоит отметить, что захлебывание колонны может наступить и при номинальной (правильной) технологической мощности, подведенной к испарительной емкости. Существуют только три причины такому нестандартному поведению колонны.

  • Первая причина – это или засорение нижней части колонны пеной, например, от бражки или переполнение испарительной емкости перерабатываемой жидкостью. Это является прямым нарушением правил безопасной эксплуатации ректификационной установки

  • Вторая причина - это повышенная подводимая мощность к кубу.

  • Третья причина - это сильное понижение атмосферного давления или попытка эксплуатации колонны в высокогорной местности. На эту причину стоит обратить особое внимание особо.

Атмосферное давление и устойчивая работа колонны

Работа колонны рассчитана на внутреннее давление в колонне 720…780мм.рт.ст. А т.к. колонна обязательно имеет связь с атмосферой через верхний штуцер дефлегматора, то это давление является и оптимальным атмосферным давлением для ее работы. Разберёмся, как атмосферное давление может влиять на работу колонны и как управлять работой колонны в высокогорной местности.
Как было указано в примере выше, (о захлебывании колонны) 1кВт тепловой мощности испаряет 3,89кг/час паров спирта. Этот массовый расход пара при нормальном давлении 760мм.рт.ст. (плотность паров спирта – 1,6кг/м3) соответствует вполне определенному объемному расходу – 2,43м3/ч, который через полное сечение колонны (например, Ф30мм) проходит со скоростью 0,96м/с. Если атмосферное давление падает до 700мм.рт.ст., то плотность паров спирта уменьшается до 1,47кг/м3, объёмный расход пара возрастает до 2,64м3/ч, и, соответственно, увеличивается его скорость в полном сечении колонны до 1,04м/с. Если эта скорость является предельной, то произойдёт захлебывание колонны.
При увеличении атмосферного давления наоборот происходит уменьшение скорости спиртовых паров, что несколько снижает эффективность разделения колонны, но это легко компенсируется регулировкой флегмового числа регулятором отбора.  При проектировании колонн закладываются определенные “запасы” в ее конструкцию для обеспечения устойчивой и оптимальной работы колонны с учетом точности изготовления контактных элементов, технологических ТЭНов (разбросов их мощности) возможного изменения атмосферного давления и прочее. Однако каждая ректификационная колонна обладает некоторой “индивидуальностью” и “норовом”, которые Вам необходимо почувствовать и правильно использовать.
Если порог захлебывания по атмосферному давлению Вашего конкретного экземпляра колонны лежит существенно ниже минимально- возможного давления в Вашей местности, Вы можете никогда не столкнуться с этой проблемой. Если такое будет изредка происходить, то можно рекомендовать Вам не проводить ректификацию в дни очень низкого атмосферного давления.

У вас в жизни всегда будет все, что вы хотите, если вы будете помогать другим людям получать то, чего хотят они.
Внимание! Через приват НЕ КОНСУЛЬТИРУЮ! Пишите в паблик.

2

Re: Теория ректификации

Возник вопрос. Флегма, которая уже идет на отбор, зачем ее еще раз прогонять через прямоточный холодильник, если она уже и есть "отборная"?

3

Re: Теория ректификации

tunix пишет:

зачем ее еще раз прогонять через прямоточный холодильник

Горячая она, обжечься можно. А так можно и не прогонять.

4

Re: Теория ректификации

transfi пишет:

Горячая она, обжечься можно. А так можно и не прогонять.

О! Понял, еще вопрос, если можно: флегма, которая идет в отбор, она сначала скапливается в "отстойнике" при отборе. Чем меньше флегмы этой в отстойнике, тем лучше, на что влияет количество? Разъясните этот вопрос, пожалуйста.

5

Re: Теория ректификации

tunix,
Некоторые моменты ректификации на стабильной колонне
Объём узла отбора ректификационной колонны, так ли он важен?
И сново объем узла отбора
Вообще, есть функция "поиск"

Бк 28/350 (750)
Рк 28/850 (1600)
Бк 54/750

6

Re: Теория ректификации

Спасибо! Буду шерстить

7 (2016-11-16 13:08:38 отредактировано transfi)

Re: Теория ректификации

tunix пишет:

Буду шерстить

Еще здесь популярно разъясненно: Рк-35/1000 мм с наклонным дефлегматором (сообщение 163)

8

Re: Теория ректификации

Всем здравствуйте!
Коллеги, я чет туплю. Никак с диаметром колонны не определюсь.
Выше сказано:

Иван пишет:

У насадок высота единицы переноса сильно зависит от диаметра колонны и стремительно увеличивается при его увеличении.

Т.е.  с увеличением диаметра количество ТТ уменьшается? Или я чет не так понимаю?

9

Re: Теория ректификации

Gerundey, скорее всего имелось ввиду, что при существенном увеличении диаметра колонны увеличиваются всякие нежелательные эффекты, типа каналообразования, смещения потока флегмы к стенкам трубы, и связанной с этим необходимостю установки концентраторов, и т.д. Для нас- не очень актуально.

Gerundey пишет:

Никак с диаметром колонны не определюсь.

Надо с доступной мощностью и высотой определиться, желательно либо сразу в своей новой теме, либо в Вопросы по сборке колонны

Бк 28/350 (750)
Рк 28/850 (1600)
Бк 54/750